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Abstract
Amazonian rivers are characterized by a strongly seasonal flood pulse, which is being altered by

ongoing and planned hydropower development across the basin. Changes in hydrology have a

cascade of physical, ecological, and social effects, and some ecohydrological changes in the

Amazon are expected to be irreversible. To better understand these linkages, we investigated

shared trends and causal factors driving fish catch in a major Amazonian tributary before dam

construction to derive relationships between catch and natural hydrologic dynamics that can be

used to assess likely post‐dam fisheries impacts. We applied a time series‐based dimension reduc-

tion technique (dynamic factor analysis) to investigate dynamics in fish catch across 10 commer-

cially important species using daily fish landings and hydrological data. We found a 4‐trend

dynamic factor model to best fit the observed data, with fitted trends exhibiting variation repre-

sentative of seasonal and longer‐term hydrologic variation. We next considered 11 candidate

explanatory time series and found the best dynamic factor model used 4 explanatory variables:

maximum water level, flooding duration, previous year's flow, and rate of change in flow; how-

ever, each species showed a unique response to this set of hydrological variables. Species‐specific

responses suggested that future dam operating rules need to closely mimic the natural hydrologic

regime in order to maintain the biological dynamics of this and similarly diverse systems. In par-

ticular, high flows associated with increased catch the following year are important to maintain,

but may be difficult to achieve in the context of reservoir regulation and energy production goals.

KEYWORDS

Amazon, artisinal fishery, dams, hydropower, time series analysis
1 | INTRODUCTION

The 6 million‐km2 Amazon River watershed (Figure 1) is the world's

largest river basin and is widely recognized as one of the planet's most

vital natural and cultural resources. Water quantity and quality in the

Amazon and its many tributaries integrate the myriad biophysical and

anthropogenic processes that occur within the basin (Coe, Costa, &

Soares‐Filho, 2009) and provide the foundation for many of the

system's ecosystem services, which are valued at a minimum of US

$30 billion per year (Butler, 2009). The magnitude and timing of flow

in Amazonian river systems and their associated lakes and wetlands

are characterized by a strongly seasonal flood pulse (Junk, Bayley, &

Sparks, 1989). Many studies have elucidated how the flood pulse

promotes high primary and secondary production in the Amazon and

other tropical rivers, with some of the most important effects observed

in the dynamics of fish stocks and fishing yields (Bayley, 1995;
wileyonlinelibrary.com/journal/eco
Castello, Isaac, & Thapa, 2015; Fearnside, 2013; Górski et al., 2012;

Halls & Welcomme, 2004; Isaac, Castello, Santos, & Ruffino, 2016;

Mérona & Gascuel, 1993; Moses, 1987; Petesse & Petrere, 2012).

Beyond the scientific community, fishermen also recognize important

associations between hydrological dynamics, fishing efficiency, and

economic earnings (Doria, Lima, & Neto, 2015; Gonçalves & Batista,

2008; Isaac & Cerdeira, 2004).

The Amazon is also a relatively untapped source of renewable

energy for Latin American countries reliant on hydropower for electric-

ity. Construction of 243 hydroelectric dams across the Amazon is

underway as a result of government plans geared toward increased

energy security, economic growth, improved living standards, and

industrialization (Lees, Peres, Fearnside, Schneider, & Zuanon, 2016;

Soares‐Filho et al., 2006). Changes in the Amazon's freshwater ecosys-

tems from hydropower development will have a cascade of physical,

ecological, and social effects; impacts on fish and fisheries from
Copyright © 2017 John Wiley & Sons, Ltd. 1 of 19
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FIGURE 1 Geographic location of the study area, with insets showing the transnational Madeira River basin and the extent of the river fished by
the Porto Velho fishermen's colony
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changes in water quantity, quality, and timing are expected to be

particularly deleterious (Agostinho, Pelicice, & Gomes, 2008; Tundisi,

1990) and potentially irreversible (Gubiani, Angelini, Vieira, Gomes, &

Agostinho, 2011). These changes can create substantial and

wide‐ranging social impacts in communities that have historically

depended on small‐scale fisheries for subsistence and economic

stability (Fearnside, 2013).

Small‐scale fisheries are characterized as low‐cost, family‐based

enterprises that use simple fishing fleets for short fishing expeditions

(FAO, 2014). Small‐scale fisheries employ 90% of the world's

fishermen and contribute approximately half of all global fish catch

(86.6 million t in 2012). These local fisheries are critical for food

security, with catches used primarily for subsistence as an important

source of protein and for local income (FAO, 2014). In the Brazilian

Amazon, small‐scale fisheries employ over 175,000 workers

(Ruffino, 2014), with an estimated production of nearly 140,000 t

(Ministério da Pesca e Aquicultura [MPA], 2010) worth approximately

US$278 million annually (Almeida, Lorenzen, & McGrath, 2004). Fish

are also the main food resource for the most riverine communities

(Isaac et al., 2015), where fish consumption was estimated at 169 kg

per person per year, one of the highest rates in the world. Technolog-

ical improvements, growth of regional markets, increasing export

demand, and an increasing number of fishermen have also contributed

to the strong socioeconomic dependence on fisheries among

Amazonian riverine communities (Almeida, Mcgrath, & Ruffino,

2001). Ongoing and planned expansion of hydropower development

in these tightly coupled social‐ecological systems (e.g., Epstein, Vogt,

Mincey, Cox, & Fischer, 2013; Ostrom, 2009) requires an improved
understanding of trends and causal factors affecting fisheries

production in both dammed and undammed systems.

Flow variability is widely recognized as a primary driver of biotic

and abiotic conditions in riverine systems (Naiman, Latterell, Pettit,

& Olden, 2008; Poff et al., 1997; Richter, Baumgartner, Powell, &

Braun, 1996). In addition to longitudinal and lateral connectivity

(Junk et al., 1989; Vannote, Minshall, Cummins, Sedell, & Cushing,

1980), maintenance of a “natural” flow regime is critical for sustaining

healthy riverine ecosystems and the services they provide (Acreman

et al., 2014; Gilvear, Spray, & Casas‐Mulet, 2013; Loomis, Kent,

Strange, Fausch, & Covich, 2000). The flood pulse concept

(Junk et al., 1989) predicts that more periodic pulsing is associated

with increased productivity, biodiversity and species adaptation

(Junk & Wantzen, 2004), and dynamic river‐floodplain environments

such as the Amazon, Mekong, Congo, and Yangtze Rivers and their

large tributaries have some of the highest levels of biodiversity and

productivity in the world (Fitzhugh & Vogel, 2010; Fu, Wu, Chen,

Wu, & Lei, 2003; Mérona & Rankin‐de‐Mérona, 2004; Winemiller

et al., 2016; Ziv, Baran, Nam, Rodriguez‐Iturbe, & Levin, 2012). In this

context, understanding how the flood pulse and other elements of the

flow regime affect fisheries production in the Amazonian in the

absence of dams is important for predicting likely impacts of ongoing

and future dam construction.

For fish, the hydrological cycle is a primary regulatory component

of the ecosystem, influencing reproduction, migration, growth, and

food availability (Agostinho, Gomes, Veríssimo, & Okada, 2004; Isaac,

Almeida, Cruz, & Nunez, 2015; Vazzoler, 1996). For example, fish

reproduction in tropical rivers is characterized by a cyclic process
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related to hydrologic variation (Agostinho, Vazzoler, Gomes, & Okada,

1993), whereby fish time their spawning with the flood pulse to utilize

floodplains for feeding and rearing (Fitzhugh & Vogel, 2010).

Floodplains promote favourable environments for protection, feeding,

and reproduction, where species feed during high water level and con-

serve energy during the dry season for reproductive success (Bunn &

Arthington, 2002; Welcomme, 1985). In the Amazon, many fish spe-

cies reproduce during the rising limb and maximum flood stages, which

guarantees fry shelter, protection, and food until they reach the juve-

nile stage (Barthem & Fabré, 2004; Vazzoler, 1996) and return to the

main channel when waters recede (Arantes, Castello, Cetra, & Schilling,

2013). Another significant factor in the Amazon is hydrologic connec-

tivity of freshwater ecosystems, especially between the Andes and

Amazonian floodplain (Finer & Jenkins, 2012), which provides for dis-

persal and colonization of species in periods of low and high water

(Hurd et al., 2016; Torrente‐Vilara, Zuanon, Leprieur, Oberdorff, &

Tedesco, 2011).

Following from its role in structuring fish reproduction, migration,

and growth, the flood pulse has also been shown to play a major role in

the dynamics of fishing yields (Bayley, 1995; Castello et al., 2015;

Fearnside, 2013; Halls & Welcomme, 2004; Petesse & Petrere,

2012). In addition to directly affecting fish abundance, seasonal

changes in water level and fish habitat also affect catchability and

fishing effort (Isaac et al., 2016). Fishermen recognize hydrological

variations and the responses of associated species and use this

knowledge to maximize fishing performance by targeting different

species throughout the year (Isaac et al., 2016). For example, years

after intense flood events are usually more profitable because high

waters promote increased connection with habitats for feeding,

decreasing natural mortality and predation, and increasing recruitment

in future years (Welcomme & Halls, 2004). Conversely, periods with

low water, in addition to increasing natural mortality, favour fishing

activities (Welcomme, 1985).

Many authors have used models to demonstrate the importance

of hydrologic seasonality in different aspects of fish community

dynamics and interactions, including the influence of floods on species

assemblages, reproduction, and recruitment of some species

(Agostinho et al., 2004; Jiménez‐Segura, Palacio, & Leite, 2010).

Approaches include model simulation experiments using time series

data and variation in hydrological conditions (Agostinho et al., 2004;

Erzini, Inejih, & Stobberup, 2005; Goto et al., 2015; Jiménez‐Segura

et al., 2010); modelling of regulatory processes affecting abundance,

biomass, and spatiotemporal variations of fish populations (Hossain,

Gopal Das, Sarker, & Rahaman, 2012; Silva, de Oliveira Pereira, Vieira,

& Petry, 2013; Sousa & Freitas, 2008); conceptual models to evaluate

interactions between fishing, fish, and seasonal flooding (Mosepele,

Moyle, Merron, Purkey, & Mosepele, 2009); and analysis of the effects

and integration of fisheries exploitation and environmental conditions

on the ecological indicators in different marine ecosystems

(Corrales et al., 2015; Fu et al., 2015).

Several studies have shown strong relationship between fisheries

and elements of the hydrological regime in riverine ecosystems around

the world (e.g., Górski et al., 2012; Moses, 1987). In the Amazon, a

number of authors have linked hydrological variables with Amazonian

fish and fisheries. For example, Mérona and Gascuel (1993) and
Matthews and Marsh‐Matthews (2003) used primarily linear models

to demonstrate flood pulse effects on fish catch across species,

highlighting positive associations between the flood peak and species

recruitment, as well as an increase in natural mortality during severe

low‐water levels that affected catch up to 2 years later. Other studies

have stressed the maintenance of channel‐floodplain connectivity as a

major factor controlling the diversity and resilience of migratory and

nonmigratory fish species (Welcomme, 1995). Castello et al.

(2013, 2015) modelled the connections between fisheries, flooding,

and effort, concluding that the magnitude and timing of low‐ and

high‐water periods, when combined with fishing effort, explained most

of the observed interannual variability in fisheries yields. In a recent

study, Isaac et al. (2016) expanded upon these insights by also

considering fishing gear and catchability to show how fishermen

alternate habitats and species to optimize their economic and biomass

returns; this study also identified important water level lag effects,

indicating that extremely wet years led to increased fisheries

recruitment in later months and years.

In this work, we aim to build on this foundation of fisheries

ecohydrology and modelling by leveraging one of the few long‐term

fisheries catch records available in the region. Data in this study

come from the Madeira River (Figure 1), a major tributary of the

Amazon. The Madeira contributes approximately 4% of the total

Amazonian fish catch (Barthem & Goulding, 2007) and was recently

recognized for having the greatest wealth of fish species (>1,000)

in the world (Ohara et al., 2015). The Madeira River watershed is

also central to the Brazilian government's hydroelectric energy devel-

opment plans (Plano Decenal de Expansão de Energia; Decadal

Energy Expansion Plan; Brasil, 2011). Construction of the Santo

Antônio and Jirau dams (Figure 1) was completed in 2011 and

2012, respectively, creating two new reservoirs and extinguishing

two main rapids, the Santo Antônio and Teotônio falls. Here, we

focus on long‐term fish catch records from before dam construction

to better understand shared temporal trends among fish species and

to derive relationships between catch and natural hydrologic

dynamics characterized by a strong seasonal flood pulse. This

analysis thus provides a critical baseline for the magnitude and

variation in fisheries catch before disturbance of this regime by

dam construction and operation.

Long‐term biological monitoring is useful for characterizing the

ranges and temporal variation of fisheries catch and supporting

the development of relationships among potential predictor variables

(e.g., Castello et al., 2013; Castello et al., 2015; Isaac et al., 2016).

However, investigating relationships between multivariate time series

to improve understanding of system dynamics using visual inspection

and comparative statistics is difficult, subjective, and may not appropri-

ately characterize the system (Ritter, Regalado, & Muñoz‐Carpena,

2009). Nevertheless, a better understanding of biological and

ecohydrological dynamics is vital to the development of management

scenarios to protect valued natural resources, especially in the face

of acute anthropogenic modification. In this context, an alternative

approach for identifying common trends and causal factors from

complex and heterogeneous data is required. To address this

challenge, we applied dynamic factor analysis (DFA), a multivariate

times series dimension reduction technique, to investigate intra‐annual
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and interannual dynamics and long‐term trends in fish catch across the

10 most abundant fish species in the Madeira River, which represent

over 80% of the total recorded landings by mass. DFA seeks to model

observed time series (response variables) as linear combinations of one

or more common trends (representing unexplained variability) and zero

or more explanatory variables (representing explained variability)

(Zuur, Tuck, & Bailey, 2003). Modelling time series data as a combina-

tion of common trends and explanatory variables is useful for analysing

relationships among the components of complex environmental

systems, where DFA can help reveal associations among response

variables and identify which explanatory variables (if any) most affect

the time series of interest. By quantifying specific links between fish

catch and hydrology, we aim to provide guidance for future dam

operation that best supports the region's important fisheries resource

and remarkable biological diversity.
2 | MATERIAL AND METHODS

2.1 | Study area

The Madeira River (Figure 1) drains over 1.4 million km2 in Brazil,

Bolivia, and Peru and is one of the most important Amazonian

tributaries in terms of flow and sediment delivery to the Amazon River

(Latrubesse, Stevaux, & Sinha, 2005; Siqueira Júnior, Tomasella, &

Rodriguez, 2015). Flow in the Madeira River is strongly seasonal, with

average discharge measured at Porto Velho (Figure 1) varying between

5,000 and 35,000 m3 s−1 in the peak dry and wet seasons, respectively

(Figure 3). The main branch of the Madeira is characterized by 19

major rapids, some of which are important as geographical barriers to

migration and fish distribution (Goulding, Barthem, & Ferreira, 2003;

Siqueira Júnior et al., 2015; Torrente‐Vilara et al., 2011). Importantly,

the Madeira River currently has two operational dams, the Jirau and

Santo Antônio (Figure 1); however, their construction began in 2008,

after the data presented here were collected. In Brazil, the Madeira

River runs through the state of Rondônia. The vast majority of the

Madeira River fish catch in Rondônia (755 ± 315 t year−1; Doria,

Ruffino, Hijazi, & Cruz, 2012) is landed at the Porto Velho fish market

(Cai N'água), which is managed by the “Z‐1” Fishermen's Colony, a

loose association of independent fishermen in the city of Porto Velho

and 12 nearby districts (Instituto Brasileiro de Geografia e Estatística,

2010). The Colony represents approximately 70 riverine communities,

totalling 1,522 associated fishermen. Fishermen in the region use

simple fishing fleets consisting of small wooden boats, and fishing

expeditions typically involve a few fishermen per craft on short,

low‐cost trips. Fishermen use a variety of handmade gear (e.g., gill nets,

harpoon, and cast net), and their catch is intended primarily for the

local market (Doria et al., 2012).
2.2 | Fisheries and hydrological data

The Z‐1 Fishermen's Colony recorded daily fish landings at the Cai

N'água fish market, including species and total landed weight

(kilogram). The Z‐1 Colony kindly provided these data to our group

at the Laboratory of Ichthyology and Fisheries at the Federal

University of Rondônia. Taxonomic identification of fish was
confirmed to the species level when possible following Queiroz et al.

(2013). In this work, daily data were aggregated to the monthly sums

for analysis, and we focused on the 10 most abundant fish

(by mass) represented in the dataset: Prochilodus nigricans (curimatã),

Brachyplatystoma spp. (dourada/filhote), Mylossoma spp. (pacu),

Semaprochilodus spp. (jaraqui), Brycon spp. (jatuarana), Triportheus

spp. (sardinha), Potamorhina spp. (branquinha), Pseudoplatystoma spp.

(surubim), Schizodon spp. (piau), and Cichla pleiozona (tucunaré).

Although effort is a fundamental component of understanding fisheries

production (Castello et al., 2015), effort data for this small‐scale fishery

were not available, andwe used landings across species as our response

variables in the analyses described below.

Daily hydrological data were obtained with the Mineral Resources

Research Company (Companhia de Pesquisa de Recursos Minerais)

monitoring station located in Porto Velho. Data included discharge

(cubic metre per second) and water level (metres above sea level; masl).

These data were aggregated to monthly averages and used to calculate

minimum, maximum, and mean monthly values for flow and level;

monthly flow increment (i.e., month‐to‐month change in discharge);

and the number of days per month the river was flooded above a

critical stage (16 masl, which was identified as an important hydrologic

indicator of increased fisheries production by members of the Z‐1

Colony; Doria et al., 2015).
2.3 | Dynamic factor analysis

Dynamic factor analysis is a parameter optimization and dimension

reduction technique that can be applied to identify interactions

between a set of response variables and possible explanatory factors

(Zuur et al., 2003). DFA seeks to identify parsimonious, statistical time

series models (dynamic factor models; DFMs) that model observed

data as linear combinations of common trends and explanatory vari-

ables. Common trends represent shared, but unexplained (i.e., latent),

variation among response variables, whereas explanatory variables

represent known variability correlated with response variable dynam-

ics. The goal of DFA is to identify one or more common trends that

represent latent variation shared among response variables and to

minimize the number of trends required to achieve an acceptable

model fit to measured data. Appropriate explanatory variables may

improve the model fit, remove reliance on common trends, and

identify external that affect the response variables, thus improving

conceptualization of the system that drives variation in the response

variables.

Initially developed for analysis of economic models (Engle &

Watson, 1981; Geweke, 1977), DFA has more recently been applied

to better understand a variety of physical and biological processes,

from commercial fisheries production (Begoña Santos et al., 2012;

Erzini et al., 2005; Pérez‐Rodríguez, 2012; Scarcella et al., 2015; Zuur

& Pierce, 2004), to groundwater and soil moisture dynamics (Kaplan

& Muñoz‐Carpena, 2011, 2014; Kaplan, Muñoz‐Carpena, & Ritter,

2010; Kovács, Márkus, & Gábor, 2004; Ritter & Muñoz‐Carpena,

2006), to large‐scale variation in rainfall and vegetation cover

(Campo‐Bescós et al., 2013; Kuo, Chu, Pan, & Yu, 2011), and links

between long‐term climate and tree growth (Linares & Camarero,

2012; Linares & Tíscar, 2011).



TABLE 1 Time series variables used in the dynamic factor analysis

Variables Series type Description

Landings Response Monthly landings (kilogram) for each of
the 10 highest‐abundance fish species
recorded at the Porto Velho fish market

WLavg Explanatory Mean, maximum, and minimum monthly
water level (masl) in the Madeira River
at Porto Velho in the current year

WLmax

WLmin

WLavg,y−1 Mean, maximum, and minimum monthly
water level (masl) measured in the
Madeira River at Porto Velho in the
previous years

WLmax,y−1

WLmin,y−1

Daysflooded Number of days in a month when the
water level exceeded 16 masl in the
current and previous year

Daysflooded,y−1

Q Madeira River flow (m3 s−1) in the current
and previous years

Qy−1

Increment Monthly change in flow
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With DFA, temporal variation in a set of N observed time series is

modelled as a linear combination of one to M common trends, zero to

K explanatory variables, a constant intercept parameter, and noise

(Zuur et al., 2003):

sn tð Þ ¼ ∑M
m¼1 γm;nαm tð Þ þ μn þ ∑k

k¼1 βk;nνk tð Þ þ εn tð Þ; (1)

αm tð Þ ¼ αm t‐1ð Þ þ ηm tð Þ; (2)

where sn(t) is a vector containing the set of N response variable time

series (in this case, monthly fish landings across ten species [kilogram]);

αm(t), same units as response variables, is a vector containing the

common trends; γm,n (dimensionless) are weighting coefficients

(“factor loadings”) representing the relative importance of each

common trends to each response variable; μn (same units as response

variables) is a constant level parameter (usually insignificant or zero

when using normalized time series); vk(t), units vary, is a vector

containing the explanatory variables (see below); and βk,n (units

variable) are weighting coefficients (“regression parameters”) for the

explanatory variables that indicate the relative importance of each

explanatory variable to each response variable. The terms n(t) and

ηm(t), same units as response variables, are independent, Gaussian

noise with zero mean and unknown diagonal or symmetric,

non‐diagonal covariance matrix.

Common trends are modelled as a random walk (Harvey, 1989)

and predicted with a Kalman filter/smoothing algorithm and expecta-

tion maximization techniques (Dempster, Laird, & Rubim, 1977;

Shumway & Stoffer, 1982; Wu, Pai, & Hosking, 1996). Factor loadings

(γm,n) and level parameters (μn) are also estimated using the expecta-

tion maximization technique, whereas simple linear regression is used

to estimate regression parameters (βk,n; Zuur & Pierce, 2004).

Calculated values of γm,n and βk,n are used to characterize the

magnitude and direction of relationships among response variables

and common trends (γm,n) and explanatory variables (βk,n). Estimated

βk,n with t values >2 were considered to be significant (Ritter et al.,

2009). Canonical correlation coefficients (ρm,n) was used to quantify

relationships between response variables and common trends,

with ρm,n close to one indicating a high degree of association. We

classified the strength of these correlations into four groups: “minor”

(|ρm,n| < 0.25); “low” (0.25 ≤ |ρm,n| < 0.50); “moderate” (0.50 ≤ |ρm,

n| < 0.75); and “high” correlations (|ρm,n| ≥ 0.75; Ritter et al., 2009).

2.4 | Explanatory variables

We explored 11 candidate explanatory hydrological variables for

inclusion in this analysis (Table 1), including mean, maximum, and

minimum monthly water level in the current year (WLavg, WLmax, and

WLmin); mean, maximum, and minimum monthly water level in the

previous year (WLavg,y−1, WLmax,y−1, and WLmin,y−1); number of days

when the water level exceeded 16 masl in the current (Daysflooded)

and previous (Daysflooded,y−1) years; Madeira River flow in the

current (Q) and previous (Qy−1) years; and the monthly flow increment

(i.e., month‐to‐month change in discharge).

In addition to investigating contemporaneous association between

fish landings and hydrological variables (Castello et al., 2015; Erzini,
2005), there are also potentially time lags between hydrological drivers

and impacts on fisheries production (Castello et al., 2015; Mérona &

Gascuel, 1993). We incorporated the potential for this lag in two ways:

(a) through the explicit inclusion of hydrologic variables lagged by

1 year in the DFA (shown in Table 1); and (b) via a cross‐correlation

analysis (CCA) between response and explanatory variables lagged

between 0 and 24 months performed using R statistical software

(R Core Development Team, 2016). Although the CCA identified a

number of significant lags between specific fish species and

explanatory variables (see Section 3), they neither were consistent

across species or variables, nor did they improve overall model

performance relative to unlagged and 1‐year‐lagged variables. Because

the goal of this work was to identify patterns of shared variation

among different species using the most parsimonious model, specific

monthly lags for each variable/species combination were not included

as potential explanatory variables. However, the CCA results were

used to help explain the magnitude and sign of the regression

parameters for the explanatory variables that were included. Finally,

because multicollinearity may exist between variables with similar time

series structure, not all candidate explanatory variables could be used

simultaneously. To assess the severity of multicollinearity, we used

the variance inflation factor (VIF) of each set of potential explanatory

variables (Zuur, Ieno, & Smith, 2007) and excluded combinations with

VIF > 5 (Ritter et al., 2009).
2.5 | Analysis procedure

We implemented DFA in three distinct steps, resulting in three models

(Table 2). Model I was developed by building a set of DFMs using an

increasing number of common trends until model performance was

deemed satisfactory according to goodness‐of‐fit indicators

(Zuur et al., 2003). DFM goodness of fit was quantified with Akaike's



TABLE 2 Dynamic factor models (DFM) tested in this study

DFM No. of trends Explanatory variables Regression parameters No. of parameters AIC R2

Model I 4 — — 54 4097.9 0.51

Model II 1 WLmax, Daysflooded, Qy−1, and increment From DFA 70 4053.9 0.31

Model IIIa 0 WLmax, Daysflooded, Qy−1, and increment From R 50 −88.65 0.22

Model IIIb 0 WLmax, Daysflooded From R 30 −92.02 0.18

Note. Model III AIC values are not directly comparable to Models I and II. AIC = Akaike's information criteria.
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information criterion (AIC; Akaike, 1974). AIC is a statistical criterion

that balances goodness of fit with model parsimony by rewarding

goodness of fit but including a penalty term based on the number of

model parameters. The DFM with the smallest AIC is preferred, and

we also used the relative likelihood function to compare different

statistical models following Burnham and Anderson (2002):

RLi ¼ exp
AICmin−AICi

2

� �
; (3)

where RLi is relative likelihood that a particular model is the “best”

(percentage), AICmin is the lowest AIC of all models, and AICi is the

AIC of a particular model.

Model II was developed by incorporating explanatory variables

into the DFA until a combination of common trends and explanatory

variables was identified that met or exceeded the goodness‐of‐fit

indicators from Model I (without exceeding the VIF criterion). Model

II thus aims to achieve similar model fitness with reduced reliance on

latent variation (i.e., with fewer common trends). Model II also aims

to reduce ρm,n and γm,n of any remaining trends, indicating reduced

dependency on unknown variation. Further reduced models were then

explored by using the explanatory variables identified in Model II to

create multilinear models without common trends to assess our ability

to model the system based solely as a function of known hydrologic

variation. Model IIIa used all explanatory variables from Model II, and

Model IIIb used a subset of explanatory variables selected using

forward and backward step‐wise variable selection with AIC as the

selection criteria. Multiple regression and model selection were

performed in R (R Core Development Team, 2016). To compare the

relative importance of common trends and explanatory variables

across response variables (Zuur et al., 2003; Zuur & Pierce, 2004), all

series were normalized before analysis (mean subtracted, divided by

standard deviation).
3 | RESULTS

3.1 | Response and explanatory variables

Forty‐eight species or groups of species were landed by the Z‐1

Fishermen's Colony from 1990 to 2007; here, we focus on the 10 most

abundant and commercially important species (Figure 2), which

represent over 80% of the total recorded landings by mass. Total

annual catch averaged over the 18‐year period of record was

848.5 t year−1. Species with the highest catch included curimatã,

followed by dourada/filhote, and pacu. The highest fish production

(894 t) was recorded in 1993, and the lowest catch (271 t) was
observed the following year. Temporal variance in catch was high

across all species (Figure 2) but was most pronounced for jatuarana,

surubim, and tucunaré.

Observed and derived hydrologic variables are shown in Figure 3.

Water level (min, max, and mean) and discharge showed strong and

regular wet/dry seasonal patterns with four major phases: rising limb

(November, December, and January), maximum flood stage (February,

March, and April), falling limb (May, June, and July), and dry season

(August, September, and October). Minimum and maximum flows and

levels occurred in the dry season of 2005 and the rainy season of

1997, respectively (Figure 3); however, year‐to‐year variance in flow

minima and maxima were relatively small. Seasonal patterns were

directly reflected in lagged metrics and increment, whereas the “days

flooded” variable had nonzero values for a subset of the wettest years

(3, 29, and 73 days in 1991–1993, respectively; 63 days in 1997 and

25 days in 2001).
3.2 | Dynamic factor analysis

3.2.1 | Baseline DFA with no explanatory variables
(Model I)

We found that four trends (M = 4) were required to adequately

describe the variation in landings of the 10 fish species; addition of a

fifth trend improved R2 but increased AIC, indicating over parameteri-

zation (Table 3). The four‐trend Model I AIC value of 4,097 was used as

a target for subsequent DFMs. Table 4 summarizes Model I results for

each trend (M) and species (n). Level parameters were all insignificant,

as expected given data normalization. Overall goodness of fit for

Model I was fair (R2 = 0.51) and highly variable across species

(0.16 ≤ R2 ≤ 0.95). Canonical correlation coefficients (ρm,n) indicate

the degree of correlation between fitted common trends and response

variables. Though only describing latent (unknown) variability at this

stage, the four common trends from Model I and their patterns of

correlation with each species (Figure 4) were useful for developing

ideas about shared variation in catch among species and identifying

potentially useful explanatory variables. For example, Trend 1 was

moderately to highly correlated (positively) with curimatã, pacu,

sardinha, and surubim. Jatuarana and piau had low correlations with

Trend 1, and correlation with the remaining four species were minor.

For the remaining three trends, moderate to high correlations existed

between Trend 2 with dourada/filhote (ρ = 0.74); Trend 3 with

jatuarana (ρ = 0.56); and Trend 4 with branquinha (ρ = −0.53); all other

correlations were low or minor. These results were generally mirrored

in the Model I factor loading (γ1,n) values (Table 4).

Although there were a limited number of moderate and high

correlations between common trends and response variables, visual



FIGURE 2 Reported fish catch for the 10 main commercial species landed in Porto Velho from 1990 to 2007. Data provided by the Z‐1 Fisher
Association. Note change in y‐axis scale. CV = coefficient of variation
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inspection of the four fitted trends provided insight into the processes

driving variation for the species that exhibit some degree of correla-

tion. For example, Trend 1 (Figure 4) exhibited strong and regular

year‐to‐year variation representative of the seasonal hydrologic

pulsing observed on the Madeira River (Figure 3). Yearly peaks inTrend

1 generally occurred in the dry season, with the highest magnitude

seasonal maxima in 1993, 1999, 2001, and 2002. Figure 4 illustrates

that the strongest correlations with Trend 1 were for curimatã, pacu,

sardinha, surubim, and piau. Trend 2 (Figure 4) showed some high‐

frequency (year‐to‐year) variation but also exhibited an apparent

lower‐frequency oscillation, ascending through the early 1990s,

declining consistently in the late 1990s, and again increasing after

2000. Strongest correlations with Trend 2 were for dourada/filhote,

jaraqui, and jatuarana (Figure 4). Trend 3 was characterized by noise

around zero with two distinct peaks in 1992 and 1997 (Figure 4),

2 years with the highest recorded water levels and a large number of

flooded days (Figure 3); this trend was most strongly correlated with

jaraqui, jatuarana, and branquinha (positive) and piau (negative;

Figure 4). Finally, Trend 4 showed longer‐scale variation from strongly

negative to strongly positive (Figure 4) and had variable (and low)

correlation with all species except branquinha (Figure 4).
Model I fits to observed data are illustrated in Figure 5 and were

fair to excellent (0.52 ≤ R2 ≤ 0.95; Table 4) for six of 10 species. Model

I did a good job of capturing peaks in production across different years

in the period of record for most species (e.g., curimatã, pacu,

dourada/filhote, jatuarana, sardinha, and surubim) but missed these

variations in branquinha and tucunaré. Notably, the four species with

poorer fits (0.16 ≤ R2 ≤ 0.40) were relatively data scarce, with the

exception of jaraqui (Table 4), highlighting the role of data complete-

ness in trend fitting. This is evidenced by both low ρm,n and γm,n values

and model performance for these species (see Section 4).
3.2.2 | DFA with explanatory variables (Model II)

As expected, VIFs among some hydrologic variables (e.g., minimum,

average, and maximum water level) were high, and only combinations

of variables that met the VIF < 5 criteria were used. This resulted in

98 different DFMs using combinations of the 11 candidate explana-

tory variables and varying numbers of common trends. We found the

best DFM used four explanatory variables (K = 4; 1.05 ≤ VIF ≤ 4.41):

WLmax, Daysflooded, Qy−1, and increment. Using these explanatory

variables allowed us to reduce the number of required common trends



FIGURE 3 (a) Minimum, average, and maximum monthly water level in centimetres (cm) above mean sea level measured at Porto Velho, (b) mean
monthly discharge and increment (change in discharge) measured at the same station, and (c) number of days water level exceeded 1,600 metre
above sea level cm, a threshold identified as important to fisheries production by member of the Z‐1 Fisher Association. Water level and discharge
data from the Mineral Resources Research Company

TABLE 3 Akaike's information criteria (AIC), R‐squared and relative

likelihood values for dynamic factor models with no explanatory vari-
ables (i.e., Model I) and 1–5 common trends (M)

M R2 AIC Relative likelihood (%)

1 0.25 4283 0

2 0.40 4169 0

3 0.46 4119 0

4 0.54 4097 N/A

5 0.56 4101 14

Note. Best model is rendered in bold.

TABLE 4 Proportion of months with data (% data), constant level paramet
and coefficients of determination (R2) for each species in Model I

Species % Data μn ρ1,n ρ2,n ρ3,n

Curimatã 87 −0.03 0.88 −0.02 0.1

Dourada/Filhote 96 0.00 0.05 0.74 −0.0

Pacu 87 −0.02 0.71 −0.07 −0.0

Jaraqui 75 0.01 −0.01 0.30 0.2

Jatuarana 80 −0.01 0.31 0.48 0.5

Sardinha 72 −0.12 0.64 0.17 −0.2

Branquinha 68 −0.03 0.02 0.09 0.3

Surubim 57 −0.17 0.52 −0.01 0.0

Piau 45 −0.20 0.41 −0.12 −0.4

Tucunaré 55 −0.09 0.06 −0.24 −0.0
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to one (M = 1), reducing unexplained variability in the model while

achieving similar performance as Model I. The selected Model II had

an AIC of 4,054, lower than the 4,098 from Model I (Table 2), and

the lowest of any DFM built using available explanatory variables

(see Supporting Information for full Model II results).

Table 5 summarizes Model II results. Level parameters were again

all insignificant due to data normalization. Despite having a reduced

AIC value, Model II fitness as measured with R2 was lower than for

Model I (overall R2 = 0.38; 0.14 ≤ R2 ≤ 0.71). Values of ρm,n and γm,n

for the one trend remaining in Model II were reduced relative to

Model I, indicating less reliance on latent variation, but were still
ers (μn), canonical correlation coefficients (ρm,n), factor loadings (γm,n),

ρ4,n γ1,n γ2,n γ3,n γ4,n R2

9 −0.21 0.56 −0.05 0.15 −0.02 0.77

6 0.09 0.04 0.31 0.12 −0.02 0.55

8 0.00 0.51 −0.05 0.04 0.03 0.56

8 −0.23 −0.08 0.12 0.08 −0.07 0.18

6 0.17 0.04 0.02 0.56 0.00 0.95

8 −0.09 0.53 0.12 −0.12 0.01 0.71

8 −0.53 −0.05 0.07 −0.08 −0.12 0.31

9 0.16 0.32 −0.13 0.19 0.05 0.40

2 0.40 0.38 −0.09 −0.02 0.11 0.52

5 0.24 0.05 −0.14 0.10 0.07 0.16



FIGURE 4 The four trends from Model I (left) and their associated canonical correlation coefficients (right)

LIMA ET AL. 9 of 19
important for some species. The trend was moderately correlated with

jatuarana, piau (positively), and branquinha (negatively); surubim,

dourada/filhote, and tucunaré had low correlations, and correlation

with the remaining four species were minor. Trend 1 (Figure 6a) does

not exhibit regular year‐to‐year variation (likely accounted for by

explanatory variables in Model II), but instead appears to represent dis-

tinct low (1992–1993) and high (1997–1998, 2002, and 2005–2006)

catch periods that are not represented by explanatory variables.

The importance of each explanatory variable to each fish species is

given by themagnitude and significance of regression coefficients (βk,n).

Maximum water level (WLmax) had the highest |βk,n| values and was a

significant predictor for seven of 10 species (Table 5 and Figure 6).

Negative βk,n values are explained by cross‐correlation patterns in

hydrologic variables and species life histories (presented below). Values

of βk,n for previous year's flow (Qy−1) were only significant for curimatã

and pacu (positive), and jaraqui (negative), whereas correlation with

days flooded was relatively high, positive, and significant for a subset

of species: curimatã, dourada, jaraqui, and jatuarana (Figure 6). Values

of βk,n for increment were significant for five species, had variable sign,

and were generally low. All species had a significant relationship with at

least one explanatory variable, with the exception of piau.

Model II fits to observed data are illustrated in Figure 7. Model fits

were lower than those fromModel I (Figure 5), but still captured coarse

patterns of intra‐annual and interannual variation for most species. In

general, Model II was best at predicting repeating year‐to‐year catch

variation (e.g., for curimatã, pacu, sardinha, and surubim) and distinct

extreme catch years (e.g., for jatuarana). Species with “noisier” tempo-

ral variation (dourada, jaraqui, branquinha, and piau) were less well
predicted. As with Model I, the poorest fit was for tucunaré

(R2 = 0.16), which had the least available data (55%; Table 4), although

this poor fit may also be due to anomalously high catch data from the

end of the period of record (Figure 7).

Cross‐correlations analysis showed highly variable relationships

between lagged hydrologic variables and fish catch for each species.

The strongest consistent lagged correlations were for water level

lagged by 6 months, flooded days lagged by 2 months, flow lagged

by 8 months, and increment lagged by 10 months (Table 6). A DFM

using these explanatory variables (1.09 ≤ VIF ≤ 3.43) and one trend

had an AIC of 4,076 (i.e., better goodness of fit than Model I, but not

as good as the selected Model II) and was thus not explored further.

However, CCA results helped to explain the variable sign of βk,n seen

for some explanatory variables (Figure 6; see Section 4).
3.2.3 | DFA with no common trends (Model III)

Finally, all common trends were removed to assess the predictive

power of a DFM using only the explanatory variables identified in

Model II (i.e., a multilinear regression model). As expected, R2 values

for Model IIIa and IIIb were reduced from those in Model II (Table 7).

With common trends removed, 16 of 40 parameters (40%) were signif-

icant to Model IIIa and 12 of 20 (60%) were significant to Model IIIb,

compared to 20 of 40 (50%) in Model II, suggesting that process for

identifying explanatory variables in Model II is relatively robust. The

relative importance of explanatory variables in Model IIIa was similar

to that in Model II, with average absolute model parameter values of

0.41, 0.18, 0.23, and 0.15 for WLmax, Daysflooded, Qy−1, and increment,



FIGURE 5 Observed (lines) and modelled (open circle) normalized catch for each species in Model I

TABLE 5 Constant level parameters (μn), canonical correlation coefficients (ρm,n), factor loadings (γm,n), regression coefficients (βk,n), and coeffi-
cients of determination (R2) for Model II

Species μn ρ1,n γ1,n β(WLmax) β(Daysflooded) β(Qy−1) β(increment) R2

Curimatã −0.01 0.05 0.04 −0.85 0.36 0.33 0.07 0.45

Dourada/Filhote 0.01 0.29 0.12 −0.01 0.22 −0.06 0.23 0.26

Pacu −0.01 0.13 0.05 −0.78 0.12 0.25 0.05 0.44

Jaraqui 0.00 −0.08 −0.02 0.63 0.26 −0.43 −0.07 0.27

Jatuarana −0.03 0.50 0.24 −0.06 0.64 0.14 −0.21 0.71

Sardinha −0.13 0.03 0.00 −0.72 0.08 0.08 0.27 0.40

Branquinha −0.09 −0.53 −0.20 0.33 0.07 −0.21 0.00 0.33

Surubim −0.09 0.35 0.14 −0.36 0.17 0.14 −0.19 0.43

Piau −0.07 0.52 0.20 −0.12 0.02 −0.18 0.11 0.38

Tucunaré −0.13 0.22 0.11 0.28 −0.07 −0.22 −0.38 0.14

Note. Significant β are shown in bold.
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respectively (compared to 0.41, 0.20, 0.20, and 0.16 for Model II). For

the more reduced Model IIIb, the relative importance of explanatory

variables was shared equally between the remaining variables (average

absolute parameter values of 0.26 and 0.23 for WLmax and Daysflooded,

respectively).
4 | DISCUSSION

This study is the first to present a quantitative measure of fisheries

production in the Madeira River fishery, detailing 18 years of monthly

fish catch data for the 10 most commercially important species



FIGURE 6 The (a) common trend, (b) canonical correlation coefficients, and (c–f) regression coefficients for each explanatory variable from Model
II (M = 1, K = 4)
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landed at the region's largest market. Analysing these data using

dynamic analysis (DFA) allowed us to (a) develop models that evaluate

which hydrologic variables were most important in explaining catch

for each species; (b) provide a baseline for understanding how fish

catch is likely to change in the dammed system; and (c) develop

preliminary recommendations for dam management to mitigate these

changes.
4.1 | The Madeira River fishery and the role of
fishermen

The Madeira River fishery is thought to currently support approxi-

mately 2,000 fishermen (Doria et al., 2015) in the state of Rondônia,

although the “official” count of fishermen is dynamic. Around 70 fish

species are used in the region's artisanal commercial fisheries, and

the mean fish consumption is around 500 g per capita per day (Doria

et al., 2015). Among the 10 most commercially important species

analysed here, average monthly catch varied by an order of magnitude

among species (i.e., from 0.84 t month−1 for tucunaré to 9.03 t month
−1 for curimatã; Figure 2). Some species were characterized by a clear

annual production cycle (e.g., curimatã, pacu, jaraqui, and sardinha),

and others were landed more consistently throughout the year

(e.g., dourada/filhote) or had noisy and sporadic catch patterns

(e.g., jatuarana, branquinha, surubim, piau, and tucunaré). Overall, catch

data also reinforce the importance of medium‐ and long‐distance

migratory species such as curimatã, dourada/filhote, and pacu for total

fisheries production in the Madeira River. These three migratory

species accounted for 57% of total catch by mass, emphasizing the
importance of understanding the factors that connect reproduction

and trophic dispersion with variations in the water cycle.

Fishermen clearly play a strong role in driving variation in fish catch,

and information about fisheries effort (in addition to overall fish catch) is

therefore fundamental to assessing fisheries production and diversity

(Castello et al., 2015). Fishing effort data are scarce in many regions

(including the Madeira), however, and fish catch data are often the only

data available (Carruthers et al., 2014), especially for small‐scale

fisheries. In general, a lack of fish catch and fishing effort data across

the Amazon makes it difficult to assess health of the fishery and

threatens the management and conservation of fish stocks

(Ruffino, 2014). This limitation is related to the size of the region and

other attributes of the fishery, such as the large number of workers fish-

ing over vast areas, a high diversity of species, gear and techniques, and

the locations of landings in diffuse or in isolated area (Barthem& Fabré,

2004; Castello, Viana, Watkins, Pinedo‐Vasquez, & Luzadis, 2009).

Despite lacking estimates of effort, these data serve as a baseline

for understanding potential changes to the fishery resulting from the

recent construction of the Santo Antônio and Jirau dams and provide

support for the idea that long‐term monitoring is a key for maintaining

a sustainable fishery in the face of change. Beyond Brazil, fisheries in

Bolivia and Peru, which make up nearly 60% of the overall Madeira

basin area, are also vulnerable to changes in fisheries production from

dam construction both within and outside of their borders (Finer &

Jenkins, 2012), particularly in relation to high‐value migratory species

such as dourada. For example, interruption of long‐distance migratory

routes has the potential to impact as many as 3,000 Bolivian fishermen

(MMAyA, 2014).



FIGURE 7 Observed (lines) and modelled (open circle) normalized catch for each species in Model II

TABLE 6 Pearson correlation values between response variables and
four lagged explanatory variables (m−2: two previous months; m−6: six
previous months; m−8: eight previous months and m−10: ten previous
months)

Species WLmin,m−6 Daysflooded,m−2 Qm−8 Incrementm−10

Curimatã 0.54 0.25 0.21 0.23

Dourada/Filhote −0.01 0.14 0.21 0.22

Pacu 0.53 0.03 0.22 0.27

Jaraqui −0.15 0.32 0.08 0.04

Jatuarana 0.05 0.53 −0.18 −0.14

Sardinha 0.45 −0.03 0.32 0.33

Branquinha 0.02 0.22 0.12 0.07

Surubim 0.29 0.14 −0.09 0.02

Piau 0.25 −0.23 0.13 0.19

Tucunaré −0.09 −0.09 −0.21 −0.14
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4.2 | Model I—Interpreting common trends

Analysis of canonical correlation coefficients (ρm,n) between common

trends and fish catch in Model I revealed patterns of shared variance

among species (Figure 4) based on life history strategy. Species with

similar migration patterns can be clustered into groups according to
their ρm,n. For example, three species in the order characiformes

(curimatã, pacu, and sardinha) and one in the order siluriformes

(surubim), all of which undertake medium‐distance migration, had

moderate to high (positive) correlations with Trend 1. These species

have a strong adaptation to cyclic annual precipitation and flow

regimes, with dry seasons and floods triggering trophic and reproduc-

tive migrations (Ruffino & Isaac, 1995). Specifically, the flood period

is characterized by migratory behaviour and reproduction of many spe-

cies, which use flooded areas for the deposit and dispersal of eggs and

larvae. During maximum flood stage, these fish are widely dispersed in

flooded habitats and fisheries catch decreases (Barthem & Fabré,

2004; Halls & Welcomme, 2004). As waters recede, adult fish return

to the river channel and become easier to catch, especially for shoaling

species (Barthem & Goulding, 1997; Ribeiro & Petrere, 1990). Fisher-

men increase their fishing effort to take advantage of the vulnerability

of these species, which are concentrated in smaller environments

during the dry season (Mérona & Gascuel, 1993). This temporal pattern

was well characterized by the yearly dry season peaks in Trend 1,

helping to explain trend correlation structure for these species.

For Trend 2, only the long‐distance migratory species dourada

(order Siluriforms) was highly correlated. Dourada are able to migrate

approximately 4,000 km from the mouth of the Amazon estuary to



TABLE 7 Regression coefficients (βk,n) and coefficients of determination (R2) for Models IIIa and IIIb

Model IIIa Model IIIb

Int. β(WLmax) β(Daysflooded) β(Qy−1) β(Increment) R2 Int. β(WLmax) β(Daysflooded) R2

Curimatã −0.01 −0.83 0.36 0.31 0.07 0.37 0.00 −0.52 0.33 0.35

Dourada/Filhote 0.01 0.03 0.19 −0.12 0.23 0.09 0.00 0.00 0.17 0.03

Pacu −0.01 −0.76 0.10 0.23 0.05 0.30 −0.01 −0.54 0.08 0.29

Jaraqui −0.01 0.60 0.27 −0.40 −0.06 0.22 −0.01 0.23 0.29 0.18

Jatuarana 0.00 0.07 0.59 −0.02 −0.19 0.36 0.03 0.00 0.61 0.33

Sardinha −0.13 −0.72 0.08 0.08 0.27 0.32 −0.09 −0.53 0.03 0.27

Branquinha −0.02 0.32 0.22 −0.17 0.00 0.09 −0.03 0.17 0.23 0.08

Surubim −0.06 −0.30 0.17 0.07 −0.21 0.15 −0.03 −0.28 0.19 0.11

Piau −0.08 −0.18 −0.16 −0.18 0.04 0.16 −0.08 −0.32 −0.32 0.15

Tucunaré −0.13 0.28 −0.13 −0.25 −0.37 0.11 0.01 0.04 −0.09 0.01

Note. Significant β are shown in bold.
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the headwaters of Andean rivers in Ecuador, Peru, Colombia, and

Bolivia to spawn (Cella‐Ribeiro et al., 2015; Duponchelle et al., 2016;

García Vásquez et al., 2009). Like Trend 1, Trend 2 exhibits annual

variation but is usually out of phase with Trend 1, with peaks during

the rising limb of the hydrograph. This may be explained by the

migration of species such as dourada during the rising limb, when they

are restricted to the river channel and thus vulnerable to fishing (García

Vásquez et al., 2009). As noted above, Trend 2 also had lower‐

frequency variation with three distinct periods corresponding to

oscillation between low and high periods: 1990–1994 (below average);

1994–2000 (above average); and 2000–2007 (below average). It is not

clear what is driving this longer temporal scale variation; correlations

between Trend 2 and standard climate indices (e.g., Atlantic

Multi‐decadal Oscillation, Pacific Decadal Oscillation, Sea‐surface tem-

perature anomalies, and various El Niño–Southern Oscillation [ENSO]

indices) were all insignificant. However, the flood pulse in the Amazon

is influenced by rainfall in the drainage basin associated with the

Andean thaw, and the spatial and temporal variations are intensified

by ENSO effects that cause accentuated droughts and floods (Pielke

& Landsea, 1999). Longer‐scale temporal variations may also reflect

biotic interactions that modify the structure of local fish communities.

For example, in low‐water periods, there is increased predation and

therefore possible effect on the recruitment of fisheries in subsequent

years (Sousa & Freitas, 2008; Vieira, Garcia, & Grimm, 2008).

Trend 3 largely represented peaks in fish catch in the high flood

years of 1993 and 1997. There were significant correlations between

Trend 3 and some climate indices (ENSO and Pacific Decadal

Oscillation); however, this trend was better characterized by the

number of days flooded (see Section 4.3). The duration and intensity

of hydrologic fluctuations may facilitate or undermine the recruitment

success of different species (Bittencourt & Amadio, 2007). Environ-

ments with longer periods of intense floods provide protection and

reduce the vulnerability of fish larvae to natural predation, thus

favouring the recruitment of individuals to the environment

(Vieira et al., 2008). Jatuarana, a medium‐distance migratory species

of the order Characiforms, had the highest correlation with Trend 3

(ρ3,5 = 0.56), followed by branquinha and jaraqui. Visual inspection of

Figure 2 reveals distinct peaks in catch for these species in 1993 and
1997 (except for branquinha in 1997, when data were missing).

Jatuarana just missed the moderate correlation cut‐off with Trend 2,

with ρ2,5 = 0.48, but the model for this species has the highest overall

correlation with all trends (i.e., maximum ρm,n), indicating that the

Model I DFM for this species relied on shared variation among all four

trends. Finally, Trend 4 had moderate (negative) correlation with

branquinha and low (positive) correlation with piau. Given the shape

of Trend 4, this may be interpreted as an oscillating but generally

decreasing trend in the catch of branquinha (ρ4,7 = −0.53) and a

gradually increasing trend in the catch of piau (ρ4,9 = 0.40) since

1993. This is supported by the raw fish catch data, which show a

negative trend in branquinha catch (p < .001) and a positive trend in

piau catch (p < .001) from 1993 through 2008 (not shown). Although

the mechanism(s) for these patterns remain unknown, Trend 4 was

useful in identifying these general trends, which were not apparent

from visual inspection of the raw data (Figure 2).
4.3 | Models II and III—Interpreting explanatory
variables

Development of Model II allowed us to identify the set of explanatory

variables that best described variation in fish catch across all 10

species. These results are important because they use relatively simple

and widely observed hydrologic data to predict fish catch in the natural

(i.e., undammed) system. This approach yielded one distinct best

Model II that used four (sufficiently independent) hydrologic variables

and one common trend. We also applied these variables to develop

multilinear models with no trends (Models IIIa and IIIb). Models II and

IIIa and IIIb revealed similar patterns in the relative magnitude

and sign of correlations (βk,n) between observed fish catch and each

variable. Because all response and explanatory variables were

normalized before analysis, the relative magnitude of these βk,n values

can be interpreted as weights, with higher values having more

importance in the resulting model. Values of βk,n fromModels II and IIIa

were similar; for simplicity, we refer to those from Model II in the

discussion below. Fitted βk,n indicate that, in general, WLmax was

the strongest driver of overall variation in observed fish catch (mean

|βk,n| = 0.41), whereas Daysflooded, Qy−1, and increment were all
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about half as important (mean |βk,n| = 0.20, 0.20, and 0.16, respec-

tively). Critically, however, this ordering of importance is not consis-

tent across species. For example, days flooded provided the

strongest explanation for variation in catch of jatuarana (β3,5 = 0.59),

whereas WLmax was insignificant for this species (Table 7). Similarly,

increment was the best predictor for tucunaré (β4,10 = −0.37) and

was this species' only significant explanatory variable.

Figure 6 summarizes the magnitude, sign, and significance of the

correlation between each response and explanatory variable, illustrat-

ing the unique relationship between each fish species and the hydro-

logical variables in Model II. The strong seasonal cycling of WLmax

served to replace (in part) the temporal variation previously provided

by Trend 1 in Model I, and we invoke the same general mechanistic

connection to explain these correlations (i.e., trophic and reproductive

migrations triggered by cyclic flow regimes), which were significant for

seven of 10 species. Strong negative βk,n values for curimatã, pacu,

sardinha, and surubim are explained by the CCA (Table 6). In short,

when water levels are high, catch for these species is low, and vice

versa. This relationship shows up as a negative unlagged correlation

or a positive correlation if lagged by 6 months because of the region's

cyclical high‐low water cycle (Figure 3), which exhibits strongest nega-

tive autocorrelation at lags of 6 months. Thus, the high lagged correla-

tions in Table 6 correspond to the negative βk,n found between WLmax

and catch of curimatã, pacu, sardinha, surubim, and piau (Figure 6).

Values of βk,n for Qy−1 and Daysflooded were all positive (except for

piau), moderate in magnitude, and significant for the same four species

(Figure 6). The sign of this relationship is consonant with the concept

that high flow years, particularly those with flood stages above a

critical level for floodplain connection, are associated with increased

productivity (Castello et al., 2015; Junk et al., 1989). Differences in

the exact timing of the flood cycle from year to year reduced correla-

tion among Qy−1 and other water level/flow variables sufficiently for

its use in Model II (i.e., its addition did not increase VIF > 5); however,

it exhibited a similar cyclic pattern. As such, in Model II, Qy−1 was

associated with species with peaks in catch that are out of phase with

WLmax. In this sense, Qy−1 (in part) took the place of Trend 2 in Model I.

Strong similarities between the Daysflooded variable and Model I Trend

3 further support the idea of “trading” unknown for explained

variation. Trend 3 from Model I mirrored the Daysflooded peaks in

1993 and 1997, though it missed the shorter 2001 flooding event.

Similar to ρ3,n values from Model I, β3,n values for Model II were

highest for jatuarana, and strong reliance on this variable is reflected

in the model fitted to these data (Figure 7).

Values of βk,n for increment were significant for five species, but

they were lowest in magnitude and variable in sign. No obvious rela-

tionship between this explanatory variable and Trend 4 from Model I

was apparent, either in temporal variation or the magnitude/sign of

associations. The time lag between reproduction and eventual harvest

(and variation in this lag among species) likely make this explanatory

variable less effective in predicting fish catch. Across variables,

interpretation of the interactions among explanatory variables and

observed fish catch by species allows us to make preliminary conclu-

sions about the role of flow in structuring fisheries dynamics and

provides guidance for future dam operation (discussed below). The

most reduced model (Model IIIb) achieved global model parsimony
(i.e., minimum AIC) by dropping increment and Qy−1 as explanatory

variables (Table 2). As a result, Model IIIb had reduced predicative abil-

ity, particularly for the species for which increment was a significant

predictor (dourada, jaraqui, sardinha, and tucanaré; tucunaré Table 7).

Challenges in selecting the best set of explanatory variables

include balancing model fitness versus number of parameters

(i.e., model parsimony), avoiding multicollinearity, and interpreting

model results relative to species‐specific biological and ecological

knowledge. Although AIC is widely used to overcome the first

challenge, in systems with several colinear variables, selection of the

best set of explanatory variables (and maintain VIF below threshold

selected a priori) becomes more arbitrary. For example, our best Model

II used four explanatory variables (WLmax, Daysflooded, Qy−1, and

increment) and one common trend, with an AIC value of 4,054. Two

models with similar fitness, one using only three explanatory variables

(WLmax, Daysflooded, and increment) and one using five explanatory

variables (WLmax, Daysflooded, Daysflooded,y−1, Qy−1, and increment)

had AIC values of 4,062 and 4,061, respectively (see Supporting Infor-

mation). The relative likelihood approach (Equation 3) indicated low

probabilities (<2%) that these models were best, but the three‐

variable model is compelling for two reasons: (a) it was more parsimo-

nious; and (b) it had a lower VIF (1.03) because water level and lagged

flow are inherently correlated given the river's cyclic annual hydrologic

cycle (although not enough to exceed the VIF < 5 threshold). Consider-

ing predicative ability, the reduced complexity, three‐variable

model had lower goodness of fit (R2 = 0.36), but the effect was small

(i.e., Model II R2 = 0.38), suggesting that the AIC parameter penalty

may not be strong enough to avoid overfitting relative to small

increases in model fitness. Finally, the lack of effort data in this study

likely contributes to the poorer fits achieved for some species

(Cooke et al., 2016; Inomata & Freitas, 2015; Lorenzen et al., 2016).
4.4 | Planning for and mitigating the impact of dams

Changes in the Amazon's freshwater ecosystems from the

development of hydropower will have a cascade of physical, ecological,

and social effects at local to global scales (Ferreira et al., 2014; Finer &

Jenkins, 2012; Laurance et al., 2001; Winemiller et al., 2016). Dams

alter the natural flow regime by changing the magnitude, frequency,

duration, timing, and rate of change of flow (Richter et al., 1996) and

by modifying the transport of riverine sediments, nutrients, and biota

(Ligon, Dietrich, & Trush, 1995), often with negative ecological

consequences (Bunn & Arthington, 2002; McCully, 1996; Van Looy,

Tormos, & Souchon, 2014). In the case of fisheries, some of these

linked social and environmental impacts of dam development may be

irreversible. For example, projected species extinctions and reductions

in fishing yield (Acreman et al., 2014; Winemiller et al., 2016) threaten

to reduce regional income and undermine food security (Castello et al.,

2015), particularly for communities that rely heavily on natural

resources (Tundisi, 2008).

Reducing the environmental impacts of dams requires the

optimization of dam operations to reduce hydrologic regime

alterations while also improving our understanding of the links

between altered hydrology and impacts to ecological and social

systems. These approaches are generally referred to as “environmental
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flows,” and >200 methodologies to address environmental degradation

from flow regulation have been developed (Arthington, Bunn, Poff, &

Naiman, 2006). Critically, application of environmental flows methods

requires integrative analyses to understand the drivers of hydrological

alteration and ecological impacts in aquatic systems in periods before

dam implementation (Castello & Macedo, 2015). These studies then

serve as a baseline from which to isolate anthropogenic impacts from

natural variability (Scarcella et al., 2015) and to derive post‐dam

conservation and mitigation strategies. This type of analysis is difficult

in areas where there is shortage of continuous data, hindering

communities and governments in these regions from taking appropri-

ate and sustainable decisions (Escobar, 2015).

In the case of the Madeira River presented here, we found DFA to

be a useful statistical time series modelling approach for evaluating

trends and their interactions with explanatory variables in the predam

setting. Despite lacking the effort data required to estimate abundance

(i.e., using catch per unit effort), the production data that were available

supported the important role of hydrologic variables in structuring

capture patterns (Carruthers et al., 2014; Erzini, 2005). The most

important explanatory variable in our model was maximum water level

followed by days flooded, river flow of the previous year, and

increment, although as noted above, the relative importance of these

drivers varied by species. One direct ramification of this finding is that

multiple hydrological variables must be considered when predicting

the likely effects of flow alterations on amultispecies fishery.Moreover,

the unique set of responses to hydrological variations across the 10

species in our study suggests that, in the future, dam operating rules

need to closely mimic the natural hydrologic regime (rather than a

one‐size‐fits‐all prescribed minimal flow) in order to maintain the

biological dynamics of these ecosystems. In particular, high flows (char-

acterized byWLmax andDaysflooded) associatedwith increased catch the

following year are important to maintain, but may be difficult to achieve

in the context of reservoir regulation and energy production goals.

Although tying fish production to hydrologic variables was a major

goal of this research, another important finding of this study is that

hydrologic variation, on its own (i.e., Model IIIa), was only able to

explain between 9% and 37% of the observed variance in fish catch

(Table 7). As noted above, inclusion of fishing effort would likely

improve this prediction; however, defining ecohydrological relation-

ships for the purpose of defining ecologically acceptable flow regimes

has proved difficult and ambiguous in many regions due to the

complexity of natural systems and the highly site and species‐specific

literature available (Black, Rowan, Duck, Bragg, & Clelland, 2005; Yang,

Cai, & Herricks, 2008). Given this challenge, many authors have

concluded that the best approach to maintaining or restoring the ecol-

ogy of a regulated river is to approximate the full range of natural flow

variability (Olden & Poff, 2003; Poff et al., 1997; Richter et al., 1996;

Sparks, 1995), with the expectation that hydrology is the primary

driver controlling abiotic and biotic riverine processes (Jowett, 1997;

Mathews & Richter, 2007; Orth, 1987). This approach was used in

recent work to understand how dams have altered hydrologic regime

across the Amazon (Timpe & Kaplan, 2017) and can be useful for guid-

ing dam operation schemes in both data‐rich and data‐scarce basins.

In closing, we note that maintaining the natural characteristics of

river flows brings numerous direct and indirect benefits to those who
depend on aquatic ecosystems (Acreman et al., 2014). Unfortunately,

despite a long history of hydropower development in the Amazon,

the cumulative, long‐term effects of dams on fish and fisheries remain

understudied and undervalued in environmental planning and

decision‐making in Brazil, both for new and existing dams (de Sousa

Júnior & Reid, 2010; Soito & Freitas, 2011). Although Brazil has

well‐defined environmental impact assessment and mitigation

programs (Andrade & dos Santos, 2015), these efforts often fail to

apply rigorous and independent science (Fearnside, 2013, 2014),

integrate data and knowledge across disciplines (Prado et al., 2016;

Soares, 2012), or monitor impacts long enough to guide improved

management and possible dam reoperation. These failures of science,

policy, and management have had widespread environmental,

economic, and social consequences (Ansar, Flyvbjerg, Budzier, & Lunn,

2014; Fearnside, 2016; Lees et al., 2016), highlighting an urgent need

to further advance interdisciplinary study of the impacts of dams on

coupled social–ecological systems, improve management practices,

and support sustainable livelihoods.
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